Metamath Proof Explorer


Theorem psr1bascl

Description: A univariate power series is a multivariate power series on one index. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses psr1rcl.p
|- P = ( PwSer1 ` R )
psr1rcl.b
|- B = ( Base ` P )
Assertion psr1bascl
|- ( F e. B -> F e. ( Base ` ( 1o mPwSer R ) ) )

Proof

Step Hyp Ref Expression
1 psr1rcl.p
 |-  P = ( PwSer1 ` R )
2 psr1rcl.b
 |-  B = ( Base ` P )
3 id
 |-  ( F e. B -> F e. B )
4 eqid
 |-  ( 1o mPwSer R ) = ( 1o mPwSer R )
5 1 2 4 psr1bas2
 |-  B = ( Base ` ( 1o mPwSer R ) )
6 3 5 eleqtrdi
 |-  ( F e. B -> F e. ( Base ` ( 1o mPwSer R ) ) )