| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrring.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | psrring.r |  |-  ( ph -> R e. Ring ) | 
						
							| 4 |  | psr1cl.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 5 |  | psr1cl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 6 |  | psr1cl.o |  |-  .1. = ( 1r ` R ) | 
						
							| 7 |  | psr1cl.u |  |-  U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) | 
						
							| 8 |  | psr1cl.b |  |-  B = ( Base ` S ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 | 9 6 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 11 | 9 5 | ring0cl |  |-  ( R e. Ring -> .0. e. ( Base ` R ) ) | 
						
							| 12 | 10 11 | ifcld |  |-  ( R e. Ring -> if ( x = ( I X. { 0 } ) , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> if ( x = ( I X. { 0 } ) , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ x e. D ) -> if ( x = ( I X. { 0 } ) , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 15 | 14 7 | fmptd |  |-  ( ph -> U : D --> ( Base ` R ) ) | 
						
							| 16 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 17 |  | ovex |  |-  ( NN0 ^m I ) e. _V | 
						
							| 18 | 4 17 | rabex2 |  |-  D e. _V | 
						
							| 19 | 16 18 | elmap |  |-  ( U e. ( ( Base ` R ) ^m D ) <-> U : D --> ( Base ` R ) ) | 
						
							| 20 | 15 19 | sylibr |  |-  ( ph -> U e. ( ( Base ` R ) ^m D ) ) | 
						
							| 21 | 1 9 4 8 2 | psrbas |  |-  ( ph -> B = ( ( Base ` R ) ^m D ) ) | 
						
							| 22 | 20 21 | eleqtrrd |  |-  ( ph -> U e. B ) |