Metamath Proof Explorer


Theorem psr1lmod

Description: Univariate power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis psr1lmod.p
|- P = ( PwSer1 ` R )
Assertion psr1lmod
|- ( R e. Ring -> P e. LMod )

Proof

Step Hyp Ref Expression
1 psr1lmod.p
 |-  P = ( PwSer1 ` R )
2 1 psr1val
 |-  P = ( ( 1o ordPwSer R ) ` (/) )
3 1on
 |-  1o e. On
4 3 a1i
 |-  ( R e. Ring -> 1o e. On )
5 id
 |-  ( R e. Ring -> R e. Ring )
6 0ss
 |-  (/) C_ ( 1o X. 1o )
7 6 a1i
 |-  ( R e. Ring -> (/) C_ ( 1o X. 1o ) )
8 2 4 5 7 opsrlmod
 |-  ( R e. Ring -> P e. LMod )