Metamath Proof Explorer


Theorem psr1sca

Description: Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 4-Jul-2015)

Ref Expression
Hypothesis psr1lmod.p
|- P = ( PwSer1 ` R )
Assertion psr1sca
|- ( R e. V -> R = ( Scalar ` P ) )

Proof

Step Hyp Ref Expression
1 psr1lmod.p
 |-  P = ( PwSer1 ` R )
2 eqid
 |-  ( 1o mPwSer R ) = ( 1o mPwSer R )
3 1 psr1val
 |-  P = ( ( 1o ordPwSer R ) ` (/) )
4 0ss
 |-  (/) C_ ( 1o X. 1o )
5 4 a1i
 |-  ( R e. V -> (/) C_ ( 1o X. 1o ) )
6 1on
 |-  1o e. On
7 6 a1i
 |-  ( R e. V -> 1o e. On )
8 id
 |-  ( R e. V -> R e. V )
9 2 3 5 7 8 opsrsca
 |-  ( R e. V -> R = ( Scalar ` P ) )