Step |
Hyp |
Ref |
Expression |
1 |
|
psr1val.1 |
|- S = ( PwSer1 ` R ) |
2 |
|
oveq2 |
|- ( r = R -> ( 1o ordPwSer r ) = ( 1o ordPwSer R ) ) |
3 |
2
|
fveq1d |
|- ( r = R -> ( ( 1o ordPwSer r ) ` (/) ) = ( ( 1o ordPwSer R ) ` (/) ) ) |
4 |
|
df-psr1 |
|- PwSer1 = ( r e. _V |-> ( ( 1o ordPwSer r ) ` (/) ) ) |
5 |
|
fvex |
|- ( ( 1o ordPwSer R ) ` (/) ) e. _V |
6 |
3 4 5
|
fvmpt |
|- ( R e. _V -> ( PwSer1 ` R ) = ( ( 1o ordPwSer R ) ` (/) ) ) |
7 |
|
0fv |
|- ( (/) ` (/) ) = (/) |
8 |
7
|
eqcomi |
|- (/) = ( (/) ` (/) ) |
9 |
|
fvprc |
|- ( -. R e. _V -> ( PwSer1 ` R ) = (/) ) |
10 |
|
reldmopsr |
|- Rel dom ordPwSer |
11 |
10
|
ovprc2 |
|- ( -. R e. _V -> ( 1o ordPwSer R ) = (/) ) |
12 |
11
|
fveq1d |
|- ( -. R e. _V -> ( ( 1o ordPwSer R ) ` (/) ) = ( (/) ` (/) ) ) |
13 |
8 9 12
|
3eqtr4a |
|- ( -. R e. _V -> ( PwSer1 ` R ) = ( ( 1o ordPwSer R ) ` (/) ) ) |
14 |
6 13
|
pm2.61i |
|- ( PwSer1 ` R ) = ( ( 1o ordPwSer R ) ` (/) ) |
15 |
1 14
|
eqtri |
|- S = ( ( 1o ordPwSer R ) ` (/) ) |