| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrascl.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrascl.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 3 |  | psrascl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | psrascl.k |  |-  K = ( Base ` R ) | 
						
							| 5 |  | psrascl.a |  |-  A = ( algSc ` S ) | 
						
							| 6 |  | psrascl.i |  |-  ( ph -> I e. V ) | 
						
							| 7 |  | psrascl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 8 |  | psrascl.x |  |-  ( ph -> X e. K ) | 
						
							| 9 | 1 6 7 | psrsca |  |-  ( ph -> R = ( Scalar ` S ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 11 | 4 10 | eqtrid |  |-  ( ph -> K = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 12 | 8 11 | eleqtrd |  |-  ( ph -> X e. ( Base ` ( Scalar ` S ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 15 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 16 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 17 | 5 13 14 15 16 | asclval |  |-  ( X e. ( Base ` ( Scalar ` S ) ) -> ( A ` X ) = ( X ( .s ` S ) ( 1r ` S ) ) ) | 
						
							| 18 | 12 17 | syl |  |-  ( ph -> ( A ` X ) = ( X ( .s ` S ) ( 1r ` S ) ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 20 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 21 | 1 6 7 | psrring |  |-  ( ph -> S e. Ring ) | 
						
							| 22 | 19 16 | ringidcl |  |-  ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( 1r ` S ) e. ( Base ` S ) ) | 
						
							| 24 | 1 15 4 19 20 2 8 23 | psrvsca |  |-  ( ph -> ( X ( .s ` S ) ( 1r ` S ) ) = ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) ) | 
						
							| 25 |  | fnconstg |  |-  ( X e. K -> ( D X. { X } ) Fn D ) | 
						
							| 26 | 8 25 | syl |  |-  ( ph -> ( D X. { X } ) Fn D ) | 
						
							| 27 | 1 4 2 19 23 | psrelbas |  |-  ( ph -> ( 1r ` S ) : D --> K ) | 
						
							| 28 | 27 | ffnd |  |-  ( ph -> ( 1r ` S ) Fn D ) | 
						
							| 29 |  | ovexd |  |-  ( ph -> ( NN0 ^m I ) e. _V ) | 
						
							| 30 | 2 29 | rabexd |  |-  ( ph -> D e. _V ) | 
						
							| 31 |  | inidm |  |-  ( D i^i D ) = D | 
						
							| 32 |  | fvconst2g |  |-  ( ( X e. K /\ y e. D ) -> ( ( D X. { X } ) ` y ) = X ) | 
						
							| 33 | 8 32 | sylan |  |-  ( ( ph /\ y e. D ) -> ( ( D X. { X } ) ` y ) = X ) | 
						
							| 34 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 35 | 1 6 7 2 3 34 16 | psr1 |  |-  ( ph -> ( 1r ` S ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ y e. D ) -> ( 1r ` S ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) | 
						
							| 37 | 36 | fveq1d |  |-  ( ( ph /\ y e. D ) -> ( ( 1r ` S ) ` y ) = ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) ) | 
						
							| 38 |  | eqeq1 |  |-  ( d = y -> ( d = ( I X. { 0 } ) <-> y = ( I X. { 0 } ) ) ) | 
						
							| 39 | 38 | ifbid |  |-  ( d = y -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) | 
						
							| 40 |  | eqid |  |-  ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) | 
						
							| 41 |  | fvex |  |-  ( 1r ` R ) e. _V | 
						
							| 42 | 3 | fvexi |  |-  .0. e. _V | 
						
							| 43 | 41 42 | ifex |  |-  if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) e. _V | 
						
							| 44 | 39 40 43 | fvmpt |  |-  ( y e. D -> ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ y e. D ) -> ( ( d e. D |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) | 
						
							| 46 | 37 45 | eqtrd |  |-  ( ( ph /\ y e. D ) -> ( ( 1r ` S ) ` y ) = if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) | 
						
							| 47 | 26 28 30 30 31 33 46 | offval |  |-  ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) = ( y e. D |-> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) ) | 
						
							| 48 |  | ovif2 |  |-  ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = if ( y = ( I X. { 0 } ) , ( X ( .r ` R ) ( 1r ` R ) ) , ( X ( .r ` R ) .0. ) ) | 
						
							| 49 | 4 20 34 7 8 | ringridmd |  |-  ( ph -> ( X ( .r ` R ) ( 1r ` R ) ) = X ) | 
						
							| 50 | 4 20 3 7 8 | ringrzd |  |-  ( ph -> ( X ( .r ` R ) .0. ) = .0. ) | 
						
							| 51 | 49 50 | ifeq12d |  |-  ( ph -> if ( y = ( I X. { 0 } ) , ( X ( .r ` R ) ( 1r ` R ) ) , ( X ( .r ` R ) .0. ) ) = if ( y = ( I X. { 0 } ) , X , .0. ) ) | 
						
							| 52 | 48 51 | eqtrid |  |-  ( ph -> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) = if ( y = ( I X. { 0 } ) , X , .0. ) ) | 
						
							| 53 | 52 | mpteq2dv |  |-  ( ph -> ( y e. D |-> ( X ( .r ` R ) if ( y = ( I X. { 0 } ) , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) | 
						
							| 54 | 47 53 | eqtrd |  |-  ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( 1r ` S ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) | 
						
							| 55 | 18 24 54 | 3eqtrd |  |-  ( ph -> ( A ` X ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , X , .0. ) ) ) |