| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrasclcl.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrasclcl.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | psrasclcl.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | psrasclcl.a |  |-  A = ( algSc ` S ) | 
						
							| 5 |  | psrasclcl.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | psrasclcl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 7 |  | psrasclcl.c |  |-  ( ph -> C e. K ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 9 | 1 5 6 | psrring |  |-  ( ph -> S e. Ring ) | 
						
							| 10 | 1 5 6 | psrlmod |  |-  ( ph -> S e. LMod ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 12 | 4 8 9 10 11 2 | asclf |  |-  ( ph -> A : ( Base ` ( Scalar ` S ) ) --> B ) | 
						
							| 13 | 1 5 6 | psrsca |  |-  ( ph -> R = ( Scalar ` S ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 15 | 3 14 | eqtrid |  |-  ( ph -> K = ( Base ` ( Scalar ` S ) ) ) | 
						
							| 16 | 15 | feq2d |  |-  ( ph -> ( A : K --> B <-> A : ( Base ` ( Scalar ` S ) ) --> B ) ) | 
						
							| 17 | 12 16 | mpbird |  |-  ( ph -> A : K --> B ) | 
						
							| 18 | 17 7 | ffvelcdmd |  |-  ( ph -> ( A ` C ) e. B ) |