Metamath Proof Explorer


Theorem psrasclcl

Description: A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psrasclcl.s
|- S = ( I mPwSer R )
psrasclcl.b
|- B = ( Base ` S )
psrasclcl.k
|- K = ( Base ` R )
psrasclcl.a
|- A = ( algSc ` S )
psrasclcl.i
|- ( ph -> I e. W )
psrasclcl.r
|- ( ph -> R e. Ring )
psrasclcl.c
|- ( ph -> C e. K )
Assertion psrasclcl
|- ( ph -> ( A ` C ) e. B )

Proof

Step Hyp Ref Expression
1 psrasclcl.s
 |-  S = ( I mPwSer R )
2 psrasclcl.b
 |-  B = ( Base ` S )
3 psrasclcl.k
 |-  K = ( Base ` R )
4 psrasclcl.a
 |-  A = ( algSc ` S )
5 psrasclcl.i
 |-  ( ph -> I e. W )
6 psrasclcl.r
 |-  ( ph -> R e. Ring )
7 psrasclcl.c
 |-  ( ph -> C e. K )
8 eqid
 |-  ( Scalar ` S ) = ( Scalar ` S )
9 1 5 6 psrring
 |-  ( ph -> S e. Ring )
10 1 5 6 psrlmod
 |-  ( ph -> S e. LMod )
11 eqid
 |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) )
12 4 8 9 10 11 2 asclf
 |-  ( ph -> A : ( Base ` ( Scalar ` S ) ) --> B )
13 1 5 6 psrsca
 |-  ( ph -> R = ( Scalar ` S ) )
14 13 fveq2d
 |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) )
15 3 14 eqtrid
 |-  ( ph -> K = ( Base ` ( Scalar ` S ) ) )
16 15 feq2d
 |-  ( ph -> ( A : K --> B <-> A : ( Base ` ( Scalar ` S ) ) --> B ) )
17 12 16 mpbird
 |-  ( ph -> A : K --> B )
18 17 7 ffvelcdmd
 |-  ( ph -> ( A ` C ) e. B )