| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrcnrg.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrcnrg.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | psrcnrg.r |  |-  ( ph -> R e. CRing ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( Base ` S ) = ( Base ` S ) ) | 
						
							| 5 | 1 2 3 | psrsca |  |-  ( ph -> R = ( Scalar ` S ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( Base ` R ) = ( Base ` R ) ) | 
						
							| 7 |  | eqidd |  |-  ( ph -> ( .s ` S ) = ( .s ` S ) ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( .r ` S ) = ( .r ` S ) ) | 
						
							| 9 | 3 | crngringd |  |-  ( ph -> R e. Ring ) | 
						
							| 10 | 1 2 9 | psrlmod |  |-  ( ph -> S e. LMod ) | 
						
							| 11 | 1 2 9 | psrring |  |-  ( ph -> S e. Ring ) | 
						
							| 12 | 2 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> I e. V ) | 
						
							| 13 | 9 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Ring ) | 
						
							| 14 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 15 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 16 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 17 |  | simpr2 |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) | 
						
							| 18 |  | simpr3 |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) | 
						
							| 19 | 3 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. CRing ) | 
						
							| 20 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 21 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 22 |  | simpr1 |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` R ) ) | 
						
							| 23 | 1 12 13 14 15 16 17 18 19 20 21 22 | psrass23 |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( ( x ( .s ` S ) y ) ( .r ` S ) z ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) /\ ( y ( .r ` S ) ( x ( .s ` S ) z ) ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) ) | 
						
							| 24 | 23 | simpld |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .s ` S ) y ) ( .r ` S ) z ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) | 
						
							| 25 | 23 | simprd |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( .r ` S ) ( x ( .s ` S ) z ) ) = ( x ( .s ` S ) ( y ( .r ` S ) z ) ) ) | 
						
							| 26 | 4 5 6 7 8 10 11 24 25 | isassad |  |-  ( ph -> S e. AssAlg ) |