| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbag.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 2 |  | psrbagconf1o.s |  |-  S = { y e. D | y oR <_ F } | 
						
							| 3 |  | eqid |  |-  ( x e. S |-> ( F oF - x ) ) = ( x e. S |-> ( F oF - x ) ) | 
						
							| 4 | 1 2 | psrbagconcl |  |-  ( ( F e. D /\ x e. S ) -> ( F oF - x ) e. S ) | 
						
							| 5 | 1 2 | psrbagconcl |  |-  ( ( F e. D /\ z e. S ) -> ( F oF - z ) e. S ) | 
						
							| 6 | 1 | psrbagf |  |-  ( F e. D -> F : I --> NN0 ) | 
						
							| 7 | 6 | adantr |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> F : I --> NN0 ) | 
						
							| 8 | 7 | ffvelcdmda |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( F ` n ) e. NN0 ) | 
						
							| 9 | 2 | ssrab3 |  |-  S C_ D | 
						
							| 10 | 9 | sseli |  |-  ( z e. S -> z e. D ) | 
						
							| 11 | 10 | adantl |  |-  ( ( F e. D /\ z e. S ) -> z e. D ) | 
						
							| 12 | 1 | psrbagf |  |-  ( z e. D -> z : I --> NN0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( F e. D /\ z e. S ) -> z : I --> NN0 ) | 
						
							| 14 | 13 | adantrl |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> z : I --> NN0 ) | 
						
							| 15 | 14 | ffvelcdmda |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( z ` n ) e. NN0 ) | 
						
							| 16 |  | simprl |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x e. S ) | 
						
							| 17 | 9 16 | sselid |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x e. D ) | 
						
							| 18 | 1 | psrbagf |  |-  ( x e. D -> x : I --> NN0 ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x : I --> NN0 ) | 
						
							| 20 | 19 | ffvelcdmda |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( x ` n ) e. NN0 ) | 
						
							| 21 |  | nn0cn |  |-  ( ( F ` n ) e. NN0 -> ( F ` n ) e. CC ) | 
						
							| 22 |  | nn0cn |  |-  ( ( z ` n ) e. NN0 -> ( z ` n ) e. CC ) | 
						
							| 23 |  | nn0cn |  |-  ( ( x ` n ) e. NN0 -> ( x ` n ) e. CC ) | 
						
							| 24 |  | subsub23 |  |-  ( ( ( F ` n ) e. CC /\ ( z ` n ) e. CC /\ ( x ` n ) e. CC ) -> ( ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) ) | 
						
							| 25 | 21 22 23 24 | syl3an |  |-  ( ( ( F ` n ) e. NN0 /\ ( z ` n ) e. NN0 /\ ( x ` n ) e. NN0 ) -> ( ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) ) | 
						
							| 26 | 8 15 20 25 | syl3anc |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) ) | 
						
							| 27 |  | eqcom |  |-  ( ( x ` n ) = ( ( F ` n ) - ( z ` n ) ) <-> ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) ) | 
						
							| 28 |  | eqcom |  |-  ( ( z ` n ) = ( ( F ` n ) - ( x ` n ) ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) | 
						
							| 29 | 26 27 28 | 3bitr4g |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( x ` n ) = ( ( F ` n ) - ( z ` n ) ) <-> ( z ` n ) = ( ( F ` n ) - ( x ` n ) ) ) ) | 
						
							| 30 | 6 | ffnd |  |-  ( F e. D -> F Fn I ) | 
						
							| 31 | 30 | adantr |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> F Fn I ) | 
						
							| 32 | 13 | ffnd |  |-  ( ( F e. D /\ z e. S ) -> z Fn I ) | 
						
							| 33 | 32 | adantrl |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> z Fn I ) | 
						
							| 34 | 19 | ffnd |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x Fn I ) | 
						
							| 35 | 16 34 | fndmexd |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> I e. _V ) | 
						
							| 36 |  | inidm |  |-  ( I i^i I ) = I | 
						
							| 37 |  | eqidd |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( F ` n ) = ( F ` n ) ) | 
						
							| 38 |  | eqidd |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( z ` n ) = ( z ` n ) ) | 
						
							| 39 | 31 33 35 35 36 37 38 | ofval |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( F oF - z ) ` n ) = ( ( F ` n ) - ( z ` n ) ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( x ` n ) = ( ( F oF - z ) ` n ) <-> ( x ` n ) = ( ( F ` n ) - ( z ` n ) ) ) ) | 
						
							| 41 |  | eqidd |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( x ` n ) = ( x ` n ) ) | 
						
							| 42 | 31 34 35 35 36 37 41 | ofval |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( F oF - x ) ` n ) = ( ( F ` n ) - ( x ` n ) ) ) | 
						
							| 43 | 42 | eqeq2d |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( z ` n ) = ( ( F oF - x ) ` n ) <-> ( z ` n ) = ( ( F ` n ) - ( x ` n ) ) ) ) | 
						
							| 44 | 29 40 43 | 3bitr4d |  |-  ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( x ` n ) = ( ( F oF - z ) ` n ) <-> ( z ` n ) = ( ( F oF - x ) ` n ) ) ) | 
						
							| 45 | 44 | ralbidva |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( A. n e. I ( x ` n ) = ( ( F oF - z ) ` n ) <-> A. n e. I ( z ` n ) = ( ( F oF - x ) ` n ) ) ) | 
						
							| 46 | 5 | adantrl |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) e. S ) | 
						
							| 47 | 9 46 | sselid |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) e. D ) | 
						
							| 48 | 1 | psrbagf |  |-  ( ( F oF - z ) e. D -> ( F oF - z ) : I --> NN0 ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) : I --> NN0 ) | 
						
							| 50 | 49 | ffnd |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) Fn I ) | 
						
							| 51 |  | eqfnfv |  |-  ( ( x Fn I /\ ( F oF - z ) Fn I ) -> ( x = ( F oF - z ) <-> A. n e. I ( x ` n ) = ( ( F oF - z ) ` n ) ) ) | 
						
							| 52 | 34 50 51 | syl2anc |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( x = ( F oF - z ) <-> A. n e. I ( x ` n ) = ( ( F oF - z ) ` n ) ) ) | 
						
							| 53 | 9 4 | sselid |  |-  ( ( F e. D /\ x e. S ) -> ( F oF - x ) e. D ) | 
						
							| 54 | 1 | psrbagf |  |-  ( ( F oF - x ) e. D -> ( F oF - x ) : I --> NN0 ) | 
						
							| 55 | 53 54 | syl |  |-  ( ( F e. D /\ x e. S ) -> ( F oF - x ) : I --> NN0 ) | 
						
							| 56 | 55 | ffnd |  |-  ( ( F e. D /\ x e. S ) -> ( F oF - x ) Fn I ) | 
						
							| 57 | 56 | adantrr |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - x ) Fn I ) | 
						
							| 58 |  | eqfnfv |  |-  ( ( z Fn I /\ ( F oF - x ) Fn I ) -> ( z = ( F oF - x ) <-> A. n e. I ( z ` n ) = ( ( F oF - x ) ` n ) ) ) | 
						
							| 59 | 33 57 58 | syl2anc |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( z = ( F oF - x ) <-> A. n e. I ( z ` n ) = ( ( F oF - x ) ` n ) ) ) | 
						
							| 60 | 45 52 59 | 3bitr4d |  |-  ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( x = ( F oF - z ) <-> z = ( F oF - x ) ) ) | 
						
							| 61 | 3 4 5 60 | f1o2d |  |-  ( F e. D -> ( x e. S |-> ( F oF - x ) ) : S -1-1-onto-> S ) |