| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbagev1.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 2 |  | psrbagev1.c |  |-  C = ( Base ` T ) | 
						
							| 3 |  | psrbagev1.x |  |-  .x. = ( .g ` T ) | 
						
							| 4 |  | psrbagev1.z |  |-  .0. = ( 0g ` T ) | 
						
							| 5 |  | psrbagev1.t |  |-  ( ph -> T e. CMnd ) | 
						
							| 6 |  | psrbagev1.b |  |-  ( ph -> B e. D ) | 
						
							| 7 |  | psrbagev1.g |  |-  ( ph -> G : I --> C ) | 
						
							| 8 | 5 | cmnmndd |  |-  ( ph -> T e. Mnd ) | 
						
							| 9 | 2 3 | mulgnn0cl |  |-  ( ( T e. Mnd /\ y e. NN0 /\ z e. C ) -> ( y .x. z ) e. C ) | 
						
							| 10 | 9 | 3expb |  |-  ( ( T e. Mnd /\ ( y e. NN0 /\ z e. C ) ) -> ( y .x. z ) e. C ) | 
						
							| 11 | 8 10 | sylan |  |-  ( ( ph /\ ( y e. NN0 /\ z e. C ) ) -> ( y .x. z ) e. C ) | 
						
							| 12 | 1 | psrbagf |  |-  ( B e. D -> B : I --> NN0 ) | 
						
							| 13 | 6 12 | syl |  |-  ( ph -> B : I --> NN0 ) | 
						
							| 14 | 13 | ffnd |  |-  ( ph -> B Fn I ) | 
						
							| 15 | 6 14 | fndmexd |  |-  ( ph -> I e. _V ) | 
						
							| 16 |  | inidm |  |-  ( I i^i I ) = I | 
						
							| 17 | 11 13 7 15 15 16 | off |  |-  ( ph -> ( B oF .x. G ) : I --> C ) | 
						
							| 18 |  | ovexd |  |-  ( ph -> ( B oF .x. G ) e. _V ) | 
						
							| 19 | 7 | ffnd |  |-  ( ph -> G Fn I ) | 
						
							| 20 | 14 19 15 15 | offun |  |-  ( ph -> Fun ( B oF .x. G ) ) | 
						
							| 21 | 4 | fvexi |  |-  .0. e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 23 | 1 | psrbagfsupp |  |-  ( B e. D -> B finSupp 0 ) | 
						
							| 24 | 6 23 | syl |  |-  ( ph -> B finSupp 0 ) | 
						
							| 25 | 24 | fsuppimpd |  |-  ( ph -> ( B supp 0 ) e. Fin ) | 
						
							| 26 |  | ssidd |  |-  ( ph -> ( B supp 0 ) C_ ( B supp 0 ) ) | 
						
							| 27 | 2 4 3 | mulg0 |  |-  ( z e. C -> ( 0 .x. z ) = .0. ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ph /\ z e. C ) -> ( 0 .x. z ) = .0. ) | 
						
							| 29 |  | c0ex |  |-  0 e. _V | 
						
							| 30 | 29 | a1i |  |-  ( ph -> 0 e. _V ) | 
						
							| 31 | 26 28 13 7 15 30 | suppssof1 |  |-  ( ph -> ( ( B oF .x. G ) supp .0. ) C_ ( B supp 0 ) ) | 
						
							| 32 |  | suppssfifsupp |  |-  ( ( ( ( B oF .x. G ) e. _V /\ Fun ( B oF .x. G ) /\ .0. e. _V ) /\ ( ( B supp 0 ) e. Fin /\ ( ( B oF .x. G ) supp .0. ) C_ ( B supp 0 ) ) ) -> ( B oF .x. G ) finSupp .0. ) | 
						
							| 33 | 18 20 22 25 31 32 | syl32anc |  |-  ( ph -> ( B oF .x. G ) finSupp .0. ) | 
						
							| 34 | 17 33 | jca |  |-  ( ph -> ( ( B oF .x. G ) : I --> C /\ ( B oF .x. G ) finSupp .0. ) ) |