Step |
Hyp |
Ref |
Expression |
1 |
|
psrbagev1.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
2 |
|
psrbagev1.c |
|- C = ( Base ` T ) |
3 |
|
psrbagev1.x |
|- .x. = ( .g ` T ) |
4 |
|
psrbagev1.z |
|- .0. = ( 0g ` T ) |
5 |
|
psrbagev1.t |
|- ( ph -> T e. CMnd ) |
6 |
|
psrbagev1.b |
|- ( ph -> B e. D ) |
7 |
|
psrbagev1.g |
|- ( ph -> G : I --> C ) |
8 |
5
|
cmnmndd |
|- ( ph -> T e. Mnd ) |
9 |
2 3
|
mulgnn0cl |
|- ( ( T e. Mnd /\ y e. NN0 /\ z e. C ) -> ( y .x. z ) e. C ) |
10 |
9
|
3expb |
|- ( ( T e. Mnd /\ ( y e. NN0 /\ z e. C ) ) -> ( y .x. z ) e. C ) |
11 |
8 10
|
sylan |
|- ( ( ph /\ ( y e. NN0 /\ z e. C ) ) -> ( y .x. z ) e. C ) |
12 |
1
|
psrbagf |
|- ( B e. D -> B : I --> NN0 ) |
13 |
6 12
|
syl |
|- ( ph -> B : I --> NN0 ) |
14 |
13
|
ffnd |
|- ( ph -> B Fn I ) |
15 |
6 14
|
fndmexd |
|- ( ph -> I e. _V ) |
16 |
|
inidm |
|- ( I i^i I ) = I |
17 |
11 13 7 15 15 16
|
off |
|- ( ph -> ( B oF .x. G ) : I --> C ) |
18 |
|
ovexd |
|- ( ph -> ( B oF .x. G ) e. _V ) |
19 |
7
|
ffnd |
|- ( ph -> G Fn I ) |
20 |
14 19 15 15
|
offun |
|- ( ph -> Fun ( B oF .x. G ) ) |
21 |
4
|
fvexi |
|- .0. e. _V |
22 |
21
|
a1i |
|- ( ph -> .0. e. _V ) |
23 |
1
|
psrbagfsupp |
|- ( B e. D -> B finSupp 0 ) |
24 |
6 23
|
syl |
|- ( ph -> B finSupp 0 ) |
25 |
24
|
fsuppimpd |
|- ( ph -> ( B supp 0 ) e. Fin ) |
26 |
|
ssidd |
|- ( ph -> ( B supp 0 ) C_ ( B supp 0 ) ) |
27 |
2 4 3
|
mulg0 |
|- ( z e. C -> ( 0 .x. z ) = .0. ) |
28 |
27
|
adantl |
|- ( ( ph /\ z e. C ) -> ( 0 .x. z ) = .0. ) |
29 |
|
c0ex |
|- 0 e. _V |
30 |
29
|
a1i |
|- ( ph -> 0 e. _V ) |
31 |
26 28 13 7 15 30
|
suppssof1 |
|- ( ph -> ( ( B oF .x. G ) supp .0. ) C_ ( B supp 0 ) ) |
32 |
|
suppssfifsupp |
|- ( ( ( ( B oF .x. G ) e. _V /\ Fun ( B oF .x. G ) /\ .0. e. _V ) /\ ( ( B supp 0 ) e. Fin /\ ( ( B oF .x. G ) supp .0. ) C_ ( B supp 0 ) ) ) -> ( B oF .x. G ) finSupp .0. ) |
33 |
18 20 22 25 31 32
|
syl32anc |
|- ( ph -> ( B oF .x. G ) finSupp .0. ) |
34 |
17 33
|
jca |
|- ( ph -> ( ( B oF .x. G ) : I --> C /\ ( B oF .x. G ) finSupp .0. ) ) |