| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbagev2.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 2 |  | psrbagev2.c |  |-  C = ( Base ` T ) | 
						
							| 3 |  | psrbagev2.x |  |-  .x. = ( .g ` T ) | 
						
							| 4 |  | psrbagev2.t |  |-  ( ph -> T e. CMnd ) | 
						
							| 5 |  | psrbagev2.b |  |-  ( ph -> B e. D ) | 
						
							| 6 |  | psrbagev2.g |  |-  ( ph -> G : I --> C ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 8 |  | ovexd |  |-  ( ph -> ( B oF .x. G ) e. _V ) | 
						
							| 9 | 1 2 3 7 4 5 6 | psrbagev1 |  |-  ( ph -> ( ( B oF .x. G ) : I --> C /\ ( B oF .x. G ) finSupp ( 0g ` T ) ) ) | 
						
							| 10 | 9 | simpld |  |-  ( ph -> ( B oF .x. G ) : I --> C ) | 
						
							| 11 | 10 | ffnd |  |-  ( ph -> ( B oF .x. G ) Fn I ) | 
						
							| 12 | 8 11 | fndmexd |  |-  ( ph -> I e. _V ) | 
						
							| 13 | 9 | simprd |  |-  ( ph -> ( B oF .x. G ) finSupp ( 0g ` T ) ) | 
						
							| 14 | 2 7 4 12 10 13 | gsumcl |  |-  ( ph -> ( T gsum ( B oF .x. G ) ) e. C ) |