| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrbag.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 2 |  | simp2 |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G : I --> NN0 ) | 
						
							| 3 |  | simp1 |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F e. D ) | 
						
							| 4 |  | id |  |-  ( F e. D -> F e. D ) | 
						
							| 5 | 1 | psrbagf |  |-  ( F e. D -> F : I --> NN0 ) | 
						
							| 6 | 5 | ffnd |  |-  ( F e. D -> F Fn I ) | 
						
							| 7 | 4 6 | fndmexd |  |-  ( F e. D -> I e. _V ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> I e. _V ) | 
						
							| 9 | 1 | psrbag |  |-  ( I e. _V -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) | 
						
							| 11 | 3 10 | mpbid |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) | 
						
							| 12 | 11 | simprd |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' F " NN ) e. Fin ) | 
						
							| 13 | 1 | psrbaglesupp |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' G " NN ) C_ ( `' F " NN ) ) | 
						
							| 14 | 12 13 | ssfid |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' G " NN ) e. Fin ) | 
						
							| 15 | 1 | psrbag |  |-  ( I e. _V -> ( G e. D <-> ( G : I --> NN0 /\ ( `' G " NN ) e. Fin ) ) ) | 
						
							| 16 | 8 15 | syl |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( G e. D <-> ( G : I --> NN0 /\ ( `' G " NN ) e. Fin ) ) ) | 
						
							| 17 | 2 14 16 | mpbir2and |  |-  ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G e. D ) |