Step |
Hyp |
Ref |
Expression |
1 |
|
psrbagres.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
2 |
|
psrbagres.e |
|- E = { g e. ( NN0 ^m J ) | ( `' g " NN ) e. Fin } |
3 |
|
psrbagres.i |
|- ( ph -> I e. V ) |
4 |
|
psrbagres.j |
|- ( ph -> J C_ I ) |
5 |
|
psrbagres.f |
|- ( ph -> F e. D ) |
6 |
1
|
psrbagf |
|- ( F e. D -> F : I --> NN0 ) |
7 |
5 6
|
syl |
|- ( ph -> F : I --> NN0 ) |
8 |
7 4
|
fssresd |
|- ( ph -> ( F |` J ) : J --> NN0 ) |
9 |
1
|
psrbagfsupp |
|- ( F e. D -> F finSupp 0 ) |
10 |
5 9
|
syl |
|- ( ph -> F finSupp 0 ) |
11 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
12 |
10 11
|
fsuppres |
|- ( ph -> ( F |` J ) finSupp 0 ) |
13 |
5
|
resexd |
|- ( ph -> ( F |` J ) e. _V ) |
14 |
|
fcdmnn0fsuppg |
|- ( ( ( F |` J ) e. _V /\ ( F |` J ) : J --> NN0 ) -> ( ( F |` J ) finSupp 0 <-> ( `' ( F |` J ) " NN ) e. Fin ) ) |
15 |
13 8 14
|
syl2anc |
|- ( ph -> ( ( F |` J ) finSupp 0 <-> ( `' ( F |` J ) " NN ) e. Fin ) ) |
16 |
12 15
|
mpbid |
|- ( ph -> ( `' ( F |` J ) " NN ) e. Fin ) |
17 |
3 4
|
ssexd |
|- ( ph -> J e. _V ) |
18 |
2
|
psrbag |
|- ( J e. _V -> ( ( F |` J ) e. E <-> ( ( F |` J ) : J --> NN0 /\ ( `' ( F |` J ) " NN ) e. Fin ) ) ) |
19 |
17 18
|
syl |
|- ( ph -> ( ( F |` J ) e. E <-> ( ( F |` J ) : J --> NN0 /\ ( `' ( F |` J ) " NN ) e. Fin ) ) ) |
20 |
8 16 19
|
mpbir2and |
|- ( ph -> ( F |` J ) e. E ) |