| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrcnrg.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrcnrg.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | psrcnrg.r |  |-  ( ph -> R e. CRing ) | 
						
							| 4 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 6 | 1 2 5 | psrring |  |-  ( ph -> S e. Ring ) | 
						
							| 7 |  | eqid |  |-  ( mulGrp ` S ) = ( mulGrp ` S ) | 
						
							| 8 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 9 | 7 8 | mgpbas |  |-  ( Base ` S ) = ( Base ` ( mulGrp ` S ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( Base ` S ) = ( Base ` ( mulGrp ` S ) ) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 12 | 7 11 | mgpplusg |  |-  ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( .r ` S ) = ( +g ` ( mulGrp ` S ) ) ) | 
						
							| 14 | 7 | ringmgp |  |-  ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) | 
						
							| 15 | 6 14 | syl |  |-  ( ph -> ( mulGrp ` S ) e. Mnd ) | 
						
							| 16 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> I e. V ) | 
						
							| 17 | 5 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. Ring ) | 
						
							| 18 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 19 |  | simp2 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> x e. ( Base ` S ) ) | 
						
							| 20 |  | simp3 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) | 
						
							| 21 | 3 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. CRing ) | 
						
							| 22 | 1 16 17 18 11 8 19 20 21 | psrcom |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( .r ` S ) y ) = ( y ( .r ` S ) x ) ) | 
						
							| 23 | 10 13 15 22 | iscmnd |  |-  ( ph -> ( mulGrp ` S ) e. CMnd ) | 
						
							| 24 | 7 | iscrng |  |-  ( S e. CRing <-> ( S e. Ring /\ ( mulGrp ` S ) e. CMnd ) ) | 
						
							| 25 | 6 23 24 | sylanbrc |  |-  ( ph -> S e. CRing ) |