| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							psref.1 | 
							 |-  X = dom R  | 
						
						
							| 2 | 
							
								
							 | 
							psdmrn | 
							 |-  ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							simpld | 
							 |-  ( R e. PosetRel -> dom R = U. U. R )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							eqtrid | 
							 |-  ( R e. PosetRel -> X = U. U. R )  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq2d | 
							 |-  ( R e. PosetRel -> ( A e. X <-> A e. U. U. R ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pslem | 
							 |-  ( R e. PosetRel -> ( ( ( A R A /\ A R A ) -> A R A ) /\ ( A e. U. U. R -> A R A ) /\ ( ( A R A /\ A R A ) -> A = A ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simp2d | 
							 |-  ( R e. PosetRel -> ( A e. U. U. R -> A R A ) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							sylbid | 
							 |-  ( R e. PosetRel -> ( A e. X -> A R A ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							imp | 
							 |-  ( ( R e. PosetRel /\ A e. X ) -> A R A )  |