Description: A poset is antisymmetric and reflexive. (Contributed by FL, 3-Aug-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | psref2 | |- ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps | |- ( R e. PosetRel -> ( R e. PosetRel <-> ( Rel R /\ ( R o. R ) C_ R /\ ( R i^i `' R ) = ( _I |` U. U. R ) ) ) ) |
|
2 | 1 | ibi | |- ( R e. PosetRel -> ( Rel R /\ ( R o. R ) C_ R /\ ( R i^i `' R ) = ( _I |` U. U. R ) ) ) |
3 | 2 | simp3d | |- ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) ) |