Step |
Hyp |
Ref |
Expression |
1 |
|
psrbas.s |
|- S = ( I mPwSer R ) |
2 |
|
psrbas.k |
|- K = ( Base ` R ) |
3 |
|
psrbas.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
4 |
|
psrbas.b |
|- B = ( Base ` S ) |
5 |
|
psrelbas.x |
|- ( ph -> X e. B ) |
6 |
|
reldmpsr |
|- Rel dom mPwSer |
7 |
6 1 4
|
elbasov |
|- ( X e. B -> ( I e. _V /\ R e. _V ) ) |
8 |
5 7
|
syl |
|- ( ph -> ( I e. _V /\ R e. _V ) ) |
9 |
8
|
simpld |
|- ( ph -> I e. _V ) |
10 |
1 2 3 4 9
|
psrbas |
|- ( ph -> B = ( K ^m D ) ) |
11 |
5 10
|
eleqtrd |
|- ( ph -> X e. ( K ^m D ) ) |
12 |
2
|
fvexi |
|- K e. _V |
13 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
14 |
3 13
|
rabex2 |
|- D e. _V |
15 |
12 14
|
elmap |
|- ( X e. ( K ^m D ) <-> X : D --> K ) |
16 |
11 15
|
sylib |
|- ( ph -> X : D --> K ) |