| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrgrp.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psrgrp.i |
|- ( ph -> I e. V ) |
| 3 |
|
psrgrp.r |
|- ( ph -> R e. Grp ) |
| 4 |
|
eqidd |
|- ( ph -> ( Base ` S ) = ( Base ` S ) ) |
| 5 |
|
eqidd |
|- ( ph -> ( +g ` S ) = ( +g ` S ) ) |
| 6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 7 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 8 |
3
|
grpmgmd |
|- ( ph -> R e. Mgm ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. Mgm ) |
| 10 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
| 11 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
| 12 |
1 6 7 9 10 11
|
psraddcl |
|- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 13 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 14 |
13
|
rabex |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V |
| 15 |
14
|
a1i |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) |
| 16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 17 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 18 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` S ) ) |
| 19 |
1 16 17 6 18
|
psrelbas |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 20 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) |
| 21 |
1 16 17 6 20
|
psrelbas |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 22 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) |
| 23 |
1 16 17 6 22
|
psrelbas |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Grp ) |
| 25 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 26 |
16 25
|
grpass |
|- ( ( R e. Grp /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( ( r ( +g ` R ) s ) ( +g ` R ) t ) = ( r ( +g ` R ) ( s ( +g ` R ) t ) ) ) |
| 27 |
24 26
|
sylan |
|- ( ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) /\ ( r e. ( Base ` R ) /\ s e. ( Base ` R ) /\ t e. ( Base ` R ) ) ) -> ( ( r ( +g ` R ) s ) ( +g ` R ) t ) = ( r ( +g ` R ) ( s ( +g ` R ) t ) ) ) |
| 28 |
15 19 21 23 27
|
caofass |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x oF ( +g ` R ) y ) oF ( +g ` R ) z ) = ( x oF ( +g ` R ) ( y oF ( +g ` R ) z ) ) ) |
| 29 |
1 6 25 7 18 20
|
psradd |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( +g ` S ) y ) = ( x oF ( +g ` R ) y ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` S ) y ) oF ( +g ` R ) z ) = ( ( x oF ( +g ` R ) y ) oF ( +g ` R ) z ) ) |
| 31 |
1 6 25 7 20 22
|
psradd |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( +g ` S ) z ) = ( y oF ( +g ` R ) z ) ) |
| 32 |
31
|
oveq2d |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x oF ( +g ` R ) ( y ( +g ` S ) z ) ) = ( x oF ( +g ` R ) ( y oF ( +g ` R ) z ) ) ) |
| 33 |
28 30 32
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` S ) y ) oF ( +g ` R ) z ) = ( x oF ( +g ` R ) ( y ( +g ` S ) z ) ) ) |
| 34 |
12
|
3adant3r3 |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( +g ` S ) y ) e. ( Base ` S ) ) |
| 35 |
1 6 25 7 34 22
|
psradd |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` S ) y ) ( +g ` S ) z ) = ( ( x ( +g ` S ) y ) oF ( +g ` R ) z ) ) |
| 36 |
8
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Mgm ) |
| 37 |
1 6 7 36 20 22
|
psraddcl |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( y ( +g ` S ) z ) e. ( Base ` S ) ) |
| 38 |
1 6 25 7 18 37
|
psradd |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( +g ` S ) ( y ( +g ` S ) z ) ) = ( x oF ( +g ` R ) ( y ( +g ` S ) z ) ) ) |
| 39 |
33 35 38
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` S ) y ) ( +g ` S ) z ) = ( x ( +g ` S ) ( y ( +g ` S ) z ) ) ) |
| 40 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 41 |
1 2 3 17 40 6
|
psr0cl |
|- ( ph -> ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( 0g ` R ) } ) e. ( Base ` S ) ) |
| 42 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> I e. V ) |
| 43 |
3
|
adantr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> R e. Grp ) |
| 44 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
| 45 |
1 42 43 17 40 6 7 44
|
psr0lid |
|- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( 0g ` R ) } ) ( +g ` S ) x ) = x ) |
| 46 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 47 |
1 42 43 17 46 6 44
|
psrnegcl |
|- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( invg ` R ) o. x ) e. ( Base ` S ) ) |
| 48 |
1 42 43 17 46 6 44 40 7
|
psrlinv |
|- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( ( invg ` R ) o. x ) ( +g ` S ) x ) = ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { ( 0g ` R ) } ) ) |
| 49 |
4 5 12 39 41 45 47 48
|
isgrpd |
|- ( ph -> S e. Grp ) |