Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | psref.1 | |- X = dom R |
|
Assertion | psrn | |- ( R e. PosetRel -> X = ran R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psref.1 | |- X = dom R |
|
2 | psdmrn | |- ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) ) |
|
3 | eqtr3 | |- ( ( dom R = U. U. R /\ ran R = U. U. R ) -> dom R = ran R ) |
|
4 | 2 3 | syl | |- ( R e. PosetRel -> dom R = ran R ) |
5 | 1 4 | eqtrid | |- ( R e. PosetRel -> X = ran R ) |