Metamath Proof Explorer


Theorem psrn

Description: The range of a poset equals it domain. (Contributed by NM, 7-Jul-2008)

Ref Expression
Hypothesis psref.1
|- X = dom R
Assertion psrn
|- ( R e. PosetRel -> X = ran R )

Proof

Step Hyp Ref Expression
1 psref.1
 |-  X = dom R
2 psdmrn
 |-  ( R e. PosetRel -> ( dom R = U. U. R /\ ran R = U. U. R ) )
3 eqtr3
 |-  ( ( dom R = U. U. R /\ ran R = U. U. R ) -> dom R = ran R )
4 2 3 syl
 |-  ( R e. PosetRel -> dom R = ran R )
5 1 4 eqtrid
 |-  ( R e. PosetRel -> X = ran R )