| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrgrp.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psrgrp.i |
|- ( ph -> I e. V ) |
| 3 |
|
psrgrp.r |
|- ( ph -> R e. Grp ) |
| 4 |
|
psrneg.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 5 |
|
psrneg.i |
|- N = ( invg ` R ) |
| 6 |
|
psrneg.b |
|- B = ( Base ` S ) |
| 7 |
|
psrneg.m |
|- M = ( invg ` S ) |
| 8 |
|
psrneg.x |
|- ( ph -> X e. B ) |
| 9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 10 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 11 |
1 2 3 4 5 6 8 9 10
|
psrlinv |
|- ( ph -> ( ( N o. X ) ( +g ` S ) X ) = ( D X. { ( 0g ` R ) } ) ) |
| 12 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 13 |
1 2 3 4 9 12
|
psr0 |
|- ( ph -> ( 0g ` S ) = ( D X. { ( 0g ` R ) } ) ) |
| 14 |
11 13
|
eqtr4d |
|- ( ph -> ( ( N o. X ) ( +g ` S ) X ) = ( 0g ` S ) ) |
| 15 |
1 2 3
|
psrgrp |
|- ( ph -> S e. Grp ) |
| 16 |
1 2 3 4 5 6 8
|
psrnegcl |
|- ( ph -> ( N o. X ) e. B ) |
| 17 |
6 10 12 7
|
grpinvid2 |
|- ( ( S e. Grp /\ X e. B /\ ( N o. X ) e. B ) -> ( ( M ` X ) = ( N o. X ) <-> ( ( N o. X ) ( +g ` S ) X ) = ( 0g ` S ) ) ) |
| 18 |
15 8 16 17
|
syl3anc |
|- ( ph -> ( ( M ` X ) = ( N o. X ) <-> ( ( N o. X ) ( +g ` S ) X ) = ( 0g ` S ) ) ) |
| 19 |
14 18
|
mpbird |
|- ( ph -> ( M ` X ) = ( N o. X ) ) |