Step |
Hyp |
Ref |
Expression |
1 |
|
psrplusgpropd.b1 |
|- ( ph -> B = ( Base ` R ) ) |
2 |
|
psrplusgpropd.b2 |
|- ( ph -> B = ( Base ` S ) ) |
3 |
|
psrplusgpropd.p |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
4 |
|
simpl1 |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ph ) |
5 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
|
eqid |
|- { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } = { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |
8 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
9 |
|
simp2 |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> a e. ( Base ` ( I mPwSer R ) ) ) |
10 |
5 6 7 8 9
|
psrelbas |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> a : { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } --> ( Base ` R ) ) |
11 |
10
|
ffvelrnda |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( a ` d ) e. ( Base ` R ) ) |
12 |
4 1
|
syl |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> B = ( Base ` R ) ) |
13 |
11 12
|
eleqtrrd |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( a ` d ) e. B ) |
14 |
|
simp3 |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> b e. ( Base ` ( I mPwSer R ) ) ) |
15 |
5 6 7 8 14
|
psrelbas |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> b : { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } --> ( Base ` R ) ) |
16 |
15
|
ffvelrnda |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( b ` d ) e. ( Base ` R ) ) |
17 |
16 12
|
eleqtrrd |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( b ` d ) e. B ) |
18 |
3
|
oveqrspc2v |
|- ( ( ph /\ ( ( a ` d ) e. B /\ ( b ` d ) e. B ) ) -> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) = ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) |
19 |
4 13 17 18
|
syl12anc |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) = ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) |
20 |
19
|
mpteq2dva |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) ) = ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) ) |
21 |
10
|
ffnd |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> a Fn { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) |
22 |
15
|
ffnd |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> b Fn { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) |
23 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
24 |
23
|
rabex |
|- { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } e. _V |
25 |
24
|
a1i |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } e. _V ) |
26 |
|
inidm |
|- ( { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } i^i { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) = { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |
27 |
|
eqidd |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( a ` d ) = ( a ` d ) ) |
28 |
|
eqidd |
|- ( ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) /\ d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } ) -> ( b ` d ) = ( b ` d ) ) |
29 |
21 22 25 25 26 27 28
|
offval |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( a oF ( +g ` R ) b ) = ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` R ) ( b ` d ) ) ) ) |
30 |
21 22 25 25 26 27 28
|
offval |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( a oF ( +g ` S ) b ) = ( d e. { c e. ( NN0 ^m I ) | ( `' c " NN ) e. Fin } |-> ( ( a ` d ) ( +g ` S ) ( b ` d ) ) ) ) |
31 |
20 29 30
|
3eqtr4d |
|- ( ( ph /\ a e. ( Base ` ( I mPwSer R ) ) /\ b e. ( Base ` ( I mPwSer R ) ) ) -> ( a oF ( +g ` R ) b ) = ( a oF ( +g ` S ) b ) ) |
32 |
31
|
mpoeq3dva |
|- ( ph -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` R ) b ) ) = ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
33 |
1 2
|
eqtr3d |
|- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
34 |
33
|
psrbaspropd |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
35 |
|
mpoeq12 |
|- ( ( ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) /\ ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` S ) b ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
36 |
34 34 35
|
syl2anc |
|- ( ph -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` S ) b ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
37 |
32 36
|
eqtrd |
|- ( ph -> ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` R ) b ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) ) |
38 |
|
ofmres |
|- ( oF ( +g ` R ) |` ( ( Base ` ( I mPwSer R ) ) X. ( Base ` ( I mPwSer R ) ) ) ) = ( a e. ( Base ` ( I mPwSer R ) ) , b e. ( Base ` ( I mPwSer R ) ) |-> ( a oF ( +g ` R ) b ) ) |
39 |
|
ofmres |
|- ( oF ( +g ` S ) |` ( ( Base ` ( I mPwSer S ) ) X. ( Base ` ( I mPwSer S ) ) ) ) = ( a e. ( Base ` ( I mPwSer S ) ) , b e. ( Base ` ( I mPwSer S ) ) |-> ( a oF ( +g ` S ) b ) ) |
40 |
37 38 39
|
3eqtr4g |
|- ( ph -> ( oF ( +g ` R ) |` ( ( Base ` ( I mPwSer R ) ) X. ( Base ` ( I mPwSer R ) ) ) ) = ( oF ( +g ` S ) |` ( ( Base ` ( I mPwSer S ) ) X. ( Base ` ( I mPwSer S ) ) ) ) ) |
41 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
42 |
|
eqid |
|- ( +g ` ( I mPwSer R ) ) = ( +g ` ( I mPwSer R ) ) |
43 |
5 8 41 42
|
psrplusg |
|- ( +g ` ( I mPwSer R ) ) = ( oF ( +g ` R ) |` ( ( Base ` ( I mPwSer R ) ) X. ( Base ` ( I mPwSer R ) ) ) ) |
44 |
|
eqid |
|- ( I mPwSer S ) = ( I mPwSer S ) |
45 |
|
eqid |
|- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
46 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
47 |
|
eqid |
|- ( +g ` ( I mPwSer S ) ) = ( +g ` ( I mPwSer S ) ) |
48 |
44 45 46 47
|
psrplusg |
|- ( +g ` ( I mPwSer S ) ) = ( oF ( +g ` S ) |` ( ( Base ` ( I mPwSer S ) ) X. ( Base ` ( I mPwSer S ) ) ) ) |
49 |
40 43 48
|
3eqtr4g |
|- ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` ( I mPwSer S ) ) ) |