| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrring.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | psrring.r |  |-  ( ph -> R e. Ring ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( Base ` S ) = ( Base ` S ) ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> ( +g ` S ) = ( +g ` S ) ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> ( .r ` S ) = ( .r ` S ) ) | 
						
							| 7 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 9 | 1 2 8 | psrgrp |  |-  ( ph -> S e. Grp ) | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 12 | 3 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. Ring ) | 
						
							| 13 |  | simp2 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> x e. ( Base ` S ) ) | 
						
							| 14 |  | simp3 |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) | 
						
							| 15 | 1 10 11 12 13 14 | psrmulcl |  |-  ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( .r ` S ) y ) e. ( Base ` S ) ) | 
						
							| 16 | 2 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> I e. V ) | 
						
							| 17 | 3 | adantr |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Ring ) | 
						
							| 18 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 19 |  | simpr1 |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` S ) ) | 
						
							| 20 |  | simpr2 |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) | 
						
							| 21 |  | simpr3 |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) | 
						
							| 22 | 1 16 17 18 11 10 19 20 21 | psrass1 |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .r ` S ) y ) ( .r ` S ) z ) = ( x ( .r ` S ) ( y ( .r ` S ) z ) ) ) | 
						
							| 23 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 24 | 1 16 17 18 11 10 19 20 21 23 | psrdi |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .r ` S ) ( y ( +g ` S ) z ) ) = ( ( x ( .r ` S ) y ) ( +g ` S ) ( x ( .r ` S ) z ) ) ) | 
						
							| 25 | 1 16 17 18 11 10 19 20 21 23 | psrdir |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` S ) y ) ( .r ` S ) z ) = ( ( x ( .r ` S ) z ) ( +g ` S ) ( y ( .r ` S ) z ) ) ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 27 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 28 |  | eqid |  |-  ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) | 
						
							| 29 | 1 2 3 18 26 27 28 10 | psr1cl |  |-  ( ph -> ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( Base ` S ) ) | 
						
							| 30 | 2 | adantr |  |-  ( ( ph /\ x e. ( Base ` S ) ) -> I e. V ) | 
						
							| 31 | 3 | adantr |  |-  ( ( ph /\ x e. ( Base ` S ) ) -> R e. Ring ) | 
						
							| 32 |  | simpr |  |-  ( ( ph /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) | 
						
							| 33 | 1 30 31 18 26 27 28 10 11 32 | psrlidm |  |-  ( ( ph /\ x e. ( Base ` S ) ) -> ( ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ( .r ` S ) x ) = x ) | 
						
							| 34 | 1 30 31 18 26 27 28 10 11 32 | psrridm |  |-  ( ( ph /\ x e. ( Base ` S ) ) -> ( x ( .r ` S ) ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = x ) | 
						
							| 35 | 4 5 6 9 15 22 24 25 29 33 34 | isringd |  |-  ( ph -> S e. Ring ) |