| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrsca.s |
|- S = ( I mPwSer R ) |
| 2 |
|
psrsca.i |
|- ( ph -> I e. V ) |
| 3 |
|
psrsca.r |
|- ( ph -> R e. W ) |
| 4 |
|
psrvalstr |
|- ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) Struct <. 1 , 9 >. |
| 5 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
| 6 |
|
snsstp1 |
|- { <. ( Scalar ` ndx ) , R >. } C_ { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } |
| 7 |
|
ssun2 |
|- { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } C_ ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) |
| 8 |
6 7
|
sstri |
|- { <. ( Scalar ` ndx ) , R >. } C_ ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) |
| 9 |
4 5 8
|
strfv |
|- ( R e. W -> R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 10 |
3 9
|
syl |
|- ( ph -> R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 12 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
| 15 |
|
eqid |
|- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 16 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 17 |
1 11 15 16 2
|
psrbas |
|- ( ph -> ( Base ` S ) = ( ( Base ` R ) ^m { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) ) |
| 18 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 19 |
1 16 12 18
|
psrplusg |
|- ( +g ` S ) = ( oF ( +g ` R ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) |
| 20 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 21 |
1 16 13 20 15
|
psrmulr |
|- ( .r ` S ) = ( f e. ( Base ` S ) , z e. ( Base ` S ) |-> ( w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( R gsum ( x e. { y e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | y oR <_ w } |-> ( ( f ` x ) ( .r ` R ) ( z ` ( w oF - x ) ) ) ) ) ) ) |
| 22 |
|
eqid |
|- ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) = ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) |
| 23 |
|
eqidd |
|- ( ph -> ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) = ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) ) |
| 24 |
1 11 12 13 14 15 17 19 21 22 23 2 3
|
psrval |
|- ( ph -> S = ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) |
| 25 |
24
|
fveq2d |
|- ( ph -> ( Scalar ` S ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` S ) >. , <. ( +g ` ndx ) , ( +g ` S ) >. , <. ( .r ` ndx ) , ( .r ` S ) >. } u. { <. ( Scalar ` ndx ) , R >. , <. ( .s ` ndx ) , ( x e. ( Base ` R ) , f e. ( Base ` S ) |-> ( ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { x } ) oF ( .r ` R ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } X. { ( TopOpen ` R ) } ) ) >. } ) ) ) |
| 26 |
10 25
|
eqtr4d |
|- ( ph -> R = ( Scalar ` S ) ) |