| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrvsca.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | psrvsca.n |  |-  .xb = ( .s ` S ) | 
						
							| 3 |  | psrvsca.k |  |-  K = ( Base ` R ) | 
						
							| 4 |  | psrvsca.b |  |-  B = ( Base ` S ) | 
						
							| 5 |  | psrvsca.m |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | psrvsca.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 7 |  | psrvsca.x |  |-  ( ph -> X e. K ) | 
						
							| 8 |  | psrvsca.y |  |-  ( ph -> F e. B ) | 
						
							| 9 |  | sneq |  |-  ( x = X -> { x } = { X } ) | 
						
							| 10 | 9 | xpeq2d |  |-  ( x = X -> ( D X. { x } ) = ( D X. { X } ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( x = X -> ( ( D X. { x } ) oF .x. f ) = ( ( D X. { X } ) oF .x. f ) ) | 
						
							| 12 |  | oveq2 |  |-  ( f = F -> ( ( D X. { X } ) oF .x. f ) = ( ( D X. { X } ) oF .x. F ) ) | 
						
							| 13 | 1 2 3 4 5 6 | psrvscafval |  |-  .xb = ( x e. K , f e. B |-> ( ( D X. { x } ) oF .x. f ) ) | 
						
							| 14 |  | ovex |  |-  ( ( D X. { X } ) oF .x. F ) e. _V | 
						
							| 15 | 11 12 13 14 | ovmpo |  |-  ( ( X e. K /\ F e. B ) -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) | 
						
							| 16 | 7 8 15 | syl2anc |  |-  ( ph -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) ) |