Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | pssdif | |- ( A C. B -> ( B \ A ) =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | |- ( A C. B <-> ( A C_ B /\ A =/= B ) ) |
|
2 | pssdifn0 | |- ( ( A C_ B /\ A =/= B ) -> ( B \ A ) =/= (/) ) |
|
3 | 1 2 | sylbi | |- ( A C. B -> ( B \ A ) =/= (/) ) |