| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssconb |
|- ( ( B C_ C /\ A C_ C ) -> ( B C_ ( C \ A ) <-> A C_ ( C \ B ) ) ) |
| 2 |
1
|
ancoms |
|- ( ( A C_ C /\ B C_ C ) -> ( B C_ ( C \ A ) <-> A C_ ( C \ B ) ) ) |
| 3 |
|
difcom |
|- ( ( C \ A ) C_ B <-> ( C \ B ) C_ A ) |
| 4 |
3
|
notbii |
|- ( -. ( C \ A ) C_ B <-> -. ( C \ B ) C_ A ) |
| 5 |
4
|
a1i |
|- ( ( A C_ C /\ B C_ C ) -> ( -. ( C \ A ) C_ B <-> -. ( C \ B ) C_ A ) ) |
| 6 |
2 5
|
anbi12d |
|- ( ( A C_ C /\ B C_ C ) -> ( ( B C_ ( C \ A ) /\ -. ( C \ A ) C_ B ) <-> ( A C_ ( C \ B ) /\ -. ( C \ B ) C_ A ) ) ) |
| 7 |
|
dfpss3 |
|- ( B C. ( C \ A ) <-> ( B C_ ( C \ A ) /\ -. ( C \ A ) C_ B ) ) |
| 8 |
|
dfpss3 |
|- ( A C. ( C \ B ) <-> ( A C_ ( C \ B ) /\ -. ( C \ B ) C_ A ) ) |
| 9 |
6 7 8
|
3bitr4g |
|- ( ( A C_ C /\ B C_ C ) -> ( B C. ( C \ A ) <-> A C. ( C \ B ) ) ) |