Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psseq1d.1 | |- ( ph -> A = B ) |
|
psseq12d.2 | |- ( ph -> C = D ) |
||
Assertion | psseq12d | |- ( ph -> ( A C. C <-> B C. D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | |- ( ph -> A = B ) |
|
2 | psseq12d.2 | |- ( ph -> C = D ) |
|
3 | 1 | psseq1d | |- ( ph -> ( A C. C <-> B C. C ) ) |
4 | 2 | psseq2d | |- ( ph -> ( B C. C <-> B C. D ) ) |
5 | 3 4 | bitrd | |- ( ph -> ( A C. C <-> B C. D ) ) |