Metamath Proof Explorer


Theorem psseq12i

Description: An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)

Ref Expression
Hypotheses psseq1i.1
|- A = B
psseq12i.2
|- C = D
Assertion psseq12i
|- ( A C. C <-> B C. D )

Proof

Step Hyp Ref Expression
1 psseq1i.1
 |-  A = B
2 psseq12i.2
 |-  C = D
3 1 psseq1i
 |-  ( A C. C <-> B C. C )
4 2 psseq2i
 |-  ( B C. C <-> B C. D )
5 3 4 bitri
 |-  ( A C. C <-> B C. D )