Description: A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | pssn0 | |- ( A C. B -> B =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npss0 | |- -. A C. (/) |
|
2 | psseq2 | |- ( B = (/) -> ( A C. B <-> A C. (/) ) ) |
|
3 | 1 2 | mtbiri | |- ( B = (/) -> -. A C. B ) |
4 | 3 | necon2ai | |- ( A C. B -> B =/= (/) ) |