Metamath Proof Explorer


Theorem pssn2lp

Description: Proper subclass has no 2-cycle loops. Compare Theorem 8 of Suppes p. 23. (Contributed by NM, 7-Feb-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion pssn2lp
|- -. ( A C. B /\ B C. A )

Proof

Step Hyp Ref Expression
1 dfpss3
 |-  ( A C. B <-> ( A C_ B /\ -. B C_ A ) )
2 1 simprbi
 |-  ( A C. B -> -. B C_ A )
3 pssss
 |-  ( B C. A -> B C_ A )
4 2 3 nsyl
 |-  ( A C. B -> -. B C. A )
5 imnan
 |-  ( ( A C. B -> -. B C. A ) <-> -. ( A C. B /\ B C. A ) )
6 4 5 mpbi
 |-  -. ( A C. B /\ B C. A )