Description: Field of a subposet. (Contributed by FL, 19-Sep-2011) (Revised by Mario Carneiro, 9-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | psssdm.1 | |- X = dom R |
|
Assertion | psssdm | |- ( ( R e. PosetRel /\ A C_ X ) -> dom ( R i^i ( A X. A ) ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psssdm.1 | |- X = dom R |
|
2 | 1 | psssdm2 | |- ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) = ( X i^i A ) ) |
3 | sseqin2 | |- ( A C_ X <-> ( X i^i A ) = A ) |
|
4 | 3 | biimpi | |- ( A C_ X -> ( X i^i A ) = A ) |
5 | 2 4 | sylan9eq | |- ( ( R e. PosetRel /\ A C_ X ) -> dom ( R i^i ( A X. A ) ) = A ) |