Metamath Proof Explorer


Theorem psssdm

Description: Field of a subposet. (Contributed by FL, 19-Sep-2011) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis psssdm.1
|- X = dom R
Assertion psssdm
|- ( ( R e. PosetRel /\ A C_ X ) -> dom ( R i^i ( A X. A ) ) = A )

Proof

Step Hyp Ref Expression
1 psssdm.1
 |-  X = dom R
2 1 psssdm2
 |-  ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) = ( X i^i A ) )
3 sseqin2
 |-  ( A C_ X <-> ( X i^i A ) = A )
4 3 biimpi
 |-  ( A C_ X -> ( X i^i A ) = A )
5 2 4 sylan9eq
 |-  ( ( R e. PosetRel /\ A C_ X ) -> dom ( R i^i ( A X. A ) ) = A )