Step |
Hyp |
Ref |
Expression |
1 |
|
psssdm.1 |
|- X = dom R |
2 |
|
dmin |
|- dom ( R i^i ( A X. A ) ) C_ ( dom R i^i dom ( A X. A ) ) |
3 |
1
|
eqcomi |
|- dom R = X |
4 |
|
dmxpid |
|- dom ( A X. A ) = A |
5 |
3 4
|
ineq12i |
|- ( dom R i^i dom ( A X. A ) ) = ( X i^i A ) |
6 |
2 5
|
sseqtri |
|- dom ( R i^i ( A X. A ) ) C_ ( X i^i A ) |
7 |
6
|
a1i |
|- ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) C_ ( X i^i A ) ) |
8 |
|
simpr |
|- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x e. ( X i^i A ) ) |
9 |
8
|
elin2d |
|- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x e. A ) |
10 |
|
elinel1 |
|- ( x e. ( X i^i A ) -> x e. X ) |
11 |
1
|
psref |
|- ( ( R e. PosetRel /\ x e. X ) -> x R x ) |
12 |
10 11
|
sylan2 |
|- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x R x ) |
13 |
|
brinxp2 |
|- ( x ( R i^i ( A X. A ) ) x <-> ( ( x e. A /\ x e. A ) /\ x R x ) ) |
14 |
9 9 12 13
|
syl21anbrc |
|- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x ( R i^i ( A X. A ) ) x ) |
15 |
|
vex |
|- x e. _V |
16 |
15 15
|
breldm |
|- ( x ( R i^i ( A X. A ) ) x -> x e. dom ( R i^i ( A X. A ) ) ) |
17 |
14 16
|
syl |
|- ( ( R e. PosetRel /\ x e. ( X i^i A ) ) -> x e. dom ( R i^i ( A X. A ) ) ) |
18 |
7 17
|
eqelssd |
|- ( R e. PosetRel -> dom ( R i^i ( A X. A ) ) = ( X i^i A ) ) |