Description: A proper subclass is a subclass. Theorem 10 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssss | |- ( A C. B -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss | |- ( A C. B <-> ( A C_ B /\ A =/= B ) ) |
|
| 2 | 1 | simplbi | |- ( A C. B -> A C_ B ) |