Description: A proper subclass is a subclass. Theorem 10 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | pssss | |- ( A C. B -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | |- ( A C. B <-> ( A C_ B /\ A =/= B ) ) |
|
2 | 1 | simplbi | |- ( A C. B -> A C_ B ) |