Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pssssd.1 | |- ( ph -> A C. B ) |
|
| Assertion | pssssd | |- ( ph -> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssssd.1 | |- ( ph -> A C. B ) |
|
| 2 | pssss | |- ( A C. B -> A C_ B ) |
|
| 3 | 1 2 | syl | |- ( ph -> A C_ B ) |