Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | psssstr | |- ( ( A C. B /\ B C_ C ) -> A C. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss | |- ( B C_ C <-> ( B C. C \/ B = C ) ) |
|
2 | psstr | |- ( ( A C. B /\ B C. C ) -> A C. C ) |
|
3 | 2 | ex | |- ( A C. B -> ( B C. C -> A C. C ) ) |
4 | psseq2 | |- ( B = C -> ( A C. B <-> A C. C ) ) |
|
5 | 4 | biimpcd | |- ( A C. B -> ( B = C -> A C. C ) ) |
6 | 3 5 | jaod | |- ( A C. B -> ( ( B C. C \/ B = C ) -> A C. C ) ) |
7 | 6 | imp | |- ( ( A C. B /\ ( B C. C \/ B = C ) ) -> A C. C ) |
8 | 1 7 | sylan2b | |- ( ( A C. B /\ B C_ C ) -> A C. C ) |