Step |
Hyp |
Ref |
Expression |
1 |
|
pssss |
|- ( A C. B -> A C_ B ) |
2 |
|
pssss |
|- ( B C. C -> B C_ C ) |
3 |
1 2
|
sylan9ss |
|- ( ( A C. B /\ B C. C ) -> A C_ C ) |
4 |
|
pssn2lp |
|- -. ( C C. B /\ B C. C ) |
5 |
|
psseq1 |
|- ( A = C -> ( A C. B <-> C C. B ) ) |
6 |
5
|
anbi1d |
|- ( A = C -> ( ( A C. B /\ B C. C ) <-> ( C C. B /\ B C. C ) ) ) |
7 |
4 6
|
mtbiri |
|- ( A = C -> -. ( A C. B /\ B C. C ) ) |
8 |
7
|
con2i |
|- ( ( A C. B /\ B C. C ) -> -. A = C ) |
9 |
|
dfpss2 |
|- ( A C. C <-> ( A C_ C /\ -. A = C ) ) |
10 |
3 8 9
|
sylanbrc |
|- ( ( A C. B /\ B C. C ) -> A C. C ) |