Description: Proper subclass inclusion is transitive. Deduction form of psstr . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psstrd.1 | |- ( ph -> A C. B ) |
|
psstrd.2 | |- ( ph -> B C. C ) |
||
Assertion | psstrd | |- ( ph -> A C. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psstrd.1 | |- ( ph -> A C. B ) |
|
2 | psstrd.2 | |- ( ph -> B C. C ) |
|
3 | psstr | |- ( ( A C. B /\ B C. C ) -> A C. C ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> A C. C ) |