Metamath Proof Explorer


Theorem psstrd

Description: Proper subclass inclusion is transitive. Deduction form of psstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses psstrd.1
|- ( ph -> A C. B )
psstrd.2
|- ( ph -> B C. C )
Assertion psstrd
|- ( ph -> A C. C )

Proof

Step Hyp Ref Expression
1 psstrd.1
 |-  ( ph -> A C. B )
2 psstrd.2
 |-  ( ph -> B C. C )
3 psstr
 |-  ( ( A C. B /\ B C. C ) -> A C. C )
4 1 2 3 syl2anc
 |-  ( ph -> A C. C )