Description: Any non-universal class is a proper subclass of the universal class. (Contributed by NM, 17-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | pssv | |- ( A C. _V <-> -. A = _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv | |- A C_ _V |
|
2 | dfpss2 | |- ( A C. _V <-> ( A C_ _V /\ -. A = _V ) ) |
|
3 | 1 2 | mpbiran | |- ( A C. _V <-> -. A = _V ) |