Metamath Proof Explorer


Theorem psubatN

Description: A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses atpsub.a
|- A = ( Atoms ` K )
atpsub.s
|- S = ( PSubSp ` K )
Assertion psubatN
|- ( ( K e. B /\ X e. S /\ Y e. X ) -> Y e. A )

Proof

Step Hyp Ref Expression
1 atpsub.a
 |-  A = ( Atoms ` K )
2 atpsub.s
 |-  S = ( PSubSp ` K )
3 1 2 psubssat
 |-  ( ( K e. B /\ X e. S ) -> X C_ A )
4 3 sseld
 |-  ( ( K e. B /\ X e. S ) -> ( Y e. X -> Y e. A ) )
5 4 3impia
 |-  ( ( K e. B /\ X e. S /\ Y e. X ) -> Y e. A )