Description: A member of a projective subspace is an atom. (Contributed by NM, 4-Nov-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atpsub.a | |- A = ( Atoms ` K ) |
|
atpsub.s | |- S = ( PSubSp ` K ) |
||
Assertion | psubatN | |- ( ( K e. B /\ X e. S /\ Y e. X ) -> Y e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atpsub.a | |- A = ( Atoms ` K ) |
|
2 | atpsub.s | |- S = ( PSubSp ` K ) |
|
3 | 1 2 | psubssat | |- ( ( K e. B /\ X e. S ) -> X C_ A ) |
4 | 3 | sseld | |- ( ( K e. B /\ X e. S ) -> ( Y e. X -> Y e. A ) ) |
5 | 4 | 3impia | |- ( ( K e. B /\ X e. S /\ Y e. X ) -> Y e. A ) |