Description: Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | psubclset.a | |- A = ( Atoms ` K ) |
|
psubclset.p | |- ._|_ = ( _|_P ` K ) |
||
psubclset.c | |- C = ( PSubCl ` K ) |
||
Assertion | psubcliN | |- ( ( K e. D /\ X e. C ) -> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psubclset.a | |- A = ( Atoms ` K ) |
|
2 | psubclset.p | |- ._|_ = ( _|_P ` K ) |
|
3 | psubclset.c | |- C = ( PSubCl ` K ) |
|
4 | 1 2 3 | ispsubclN | |- ( K e. D -> ( X e. C <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) ) |
5 | 4 | biimpa | |- ( ( K e. D /\ X e. C ) -> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) |