| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psubclset.a |
|- A = ( Atoms ` K ) |
| 2 |
|
psubclset.p |
|- ._|_ = ( _|_P ` K ) |
| 3 |
|
psubclset.c |
|- C = ( PSubCl ` K ) |
| 4 |
|
elex |
|- ( K e. B -> K e. _V ) |
| 5 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
| 7 |
6
|
sseq2d |
|- ( k = K -> ( s C_ ( Atoms ` k ) <-> s C_ A ) ) |
| 8 |
|
fveq2 |
|- ( k = K -> ( _|_P ` k ) = ( _|_P ` K ) ) |
| 9 |
8 2
|
eqtr4di |
|- ( k = K -> ( _|_P ` k ) = ._|_ ) |
| 10 |
9
|
fveq1d |
|- ( k = K -> ( ( _|_P ` k ) ` s ) = ( ._|_ ` s ) ) |
| 11 |
9 10
|
fveq12d |
|- ( k = K -> ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = ( ._|_ ` ( ._|_ ` s ) ) ) |
| 12 |
11
|
eqeq1d |
|- ( k = K -> ( ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s <-> ( ._|_ ` ( ._|_ ` s ) ) = s ) ) |
| 13 |
7 12
|
anbi12d |
|- ( k = K -> ( ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) <-> ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) ) ) |
| 14 |
13
|
abbidv |
|- ( k = K -> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |
| 15 |
|
df-psubclN |
|- PSubCl = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } ) |
| 16 |
1
|
fvexi |
|- A e. _V |
| 17 |
16
|
pwex |
|- ~P A e. _V |
| 18 |
|
velpw |
|- ( s e. ~P A <-> s C_ A ) |
| 19 |
18
|
anbi1i |
|- ( ( s e. ~P A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) <-> ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) ) |
| 20 |
19
|
abbii |
|- { s | ( s e. ~P A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } |
| 21 |
|
ssab2 |
|- { s | ( s e. ~P A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } C_ ~P A |
| 22 |
20 21
|
eqsstrri |
|- { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } C_ ~P A |
| 23 |
17 22
|
ssexi |
|- { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } e. _V |
| 24 |
14 15 23
|
fvmpt |
|- ( K e. _V -> ( PSubCl ` K ) = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |
| 25 |
3 24
|
eqtrid |
|- ( K e. _V -> C = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |
| 26 |
4 25
|
syl |
|- ( K e. B -> C = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |