Step |
Hyp |
Ref |
Expression |
1 |
|
psubclset.a |
|- A = ( Atoms ` K ) |
2 |
|
psubclset.p |
|- ._|_ = ( _|_P ` K ) |
3 |
|
psubclset.c |
|- C = ( PSubCl ` K ) |
4 |
|
elex |
|- ( K e. B -> K e. _V ) |
5 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
6 |
5 1
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
7 |
6
|
sseq2d |
|- ( k = K -> ( s C_ ( Atoms ` k ) <-> s C_ A ) ) |
8 |
|
fveq2 |
|- ( k = K -> ( _|_P ` k ) = ( _|_P ` K ) ) |
9 |
8 2
|
eqtr4di |
|- ( k = K -> ( _|_P ` k ) = ._|_ ) |
10 |
9
|
fveq1d |
|- ( k = K -> ( ( _|_P ` k ) ` s ) = ( ._|_ ` s ) ) |
11 |
9 10
|
fveq12d |
|- ( k = K -> ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = ( ._|_ ` ( ._|_ ` s ) ) ) |
12 |
11
|
eqeq1d |
|- ( k = K -> ( ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s <-> ( ._|_ ` ( ._|_ ` s ) ) = s ) ) |
13 |
7 12
|
anbi12d |
|- ( k = K -> ( ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) <-> ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) ) ) |
14 |
13
|
abbidv |
|- ( k = K -> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |
15 |
|
df-psubclN |
|- PSubCl = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } ) |
16 |
1
|
fvexi |
|- A e. _V |
17 |
16
|
pwex |
|- ~P A e. _V |
18 |
|
velpw |
|- ( s e. ~P A <-> s C_ A ) |
19 |
18
|
anbi1i |
|- ( ( s e. ~P A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) <-> ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) ) |
20 |
19
|
abbii |
|- { s | ( s e. ~P A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } |
21 |
|
ssab2 |
|- { s | ( s e. ~P A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } C_ ~P A |
22 |
20 21
|
eqsstrri |
|- { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } C_ ~P A |
23 |
17 22
|
ssexi |
|- { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } e. _V |
24 |
14 15 23
|
fvmpt |
|- ( K e. _V -> ( PSubCl ` K ) = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |
25 |
3 24
|
eqtrid |
|- ( K e. _V -> C = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |
26 |
4 25
|
syl |
|- ( K e. B -> C = { s | ( s C_ A /\ ( ._|_ ` ( ._|_ ` s ) ) = s ) } ) |