Step |
Hyp |
Ref |
Expression |
1 |
|
psubspset.l |
|- .<_ = ( le ` K ) |
2 |
|
psubspset.j |
|- .\/ = ( join ` K ) |
3 |
|
psubspset.a |
|- A = ( Atoms ` K ) |
4 |
|
psubspset.s |
|- S = ( PSubSp ` K ) |
5 |
|
oveq1 |
|- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
6 |
5
|
breq2d |
|- ( q = Q -> ( P .<_ ( q .\/ r ) <-> P .<_ ( Q .\/ r ) ) ) |
7 |
|
oveq2 |
|- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
8 |
7
|
breq2d |
|- ( r = R -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ R ) ) ) |
9 |
6 8
|
rspc2ev |
|- ( ( Q e. X /\ R e. X /\ P .<_ ( Q .\/ R ) ) -> E. q e. X E. r e. X P .<_ ( q .\/ r ) ) |
10 |
1 2 3 4
|
psubspi |
|- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ E. q e. X E. r e. X P .<_ ( q .\/ r ) ) -> P e. X ) |
11 |
9 10
|
sylan2 |
|- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ ( Q e. X /\ R e. X /\ P .<_ ( Q .\/ R ) ) ) -> P e. X ) |