Metamath Proof Explorer


Theorem psubssat

Description: A projective subspace consists of atoms. (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atpsub.a
|- A = ( Atoms ` K )
atpsub.s
|- S = ( PSubSp ` K )
Assertion psubssat
|- ( ( K e. B /\ X e. S ) -> X C_ A )

Proof

Step Hyp Ref Expression
1 atpsub.a
 |-  A = ( Atoms ` K )
2 atpsub.s
 |-  S = ( PSubSp ` K )
3 eqid
 |-  ( le ` K ) = ( le ` K )
4 eqid
 |-  ( join ` K ) = ( join ` K )
5 3 4 1 2 ispsubsp
 |-  ( K e. B -> ( X e. S <-> ( X C_ A /\ A. p e. X A. q e. X A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. X ) ) ) )
6 5 simprbda
 |-  ( ( K e. B /\ X e. S ) -> X C_ A )