Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ptbas.1 | |- B = { x | E. g ( ( g Fn A /\ A. y e. A ( g ` y ) e. ( F ` y ) /\ E. z e. Fin A. y e. ( A \ z ) ( g ` y ) = U. ( F ` y ) ) /\ x = X_ y e. A ( g ` y ) ) } | |
| Assertion | ptbas | |- ( ( A e. V /\ F : A --> Top ) -> B e. TopBases ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ptbas.1 |  |-  B = { x | E. g ( ( g Fn A /\ A. y e. A ( g ` y ) e. ( F ` y ) /\ E. z e. Fin A. y e. ( A \ z ) ( g ` y ) = U. ( F ` y ) ) /\ x = X_ y e. A ( g ` y ) ) } | |
| 2 | 1 | ptbasin2 | |- ( ( A e. V /\ F : A --> Top ) -> ( fi ` B ) = B ) | 
| 3 | fibas | |- ( fi ` B ) e. TopBases | |
| 4 | 2 3 | eqeltrrdi | |- ( ( A e. V /\ F : A --> Top ) -> B e. TopBases ) |