Metamath Proof Explorer


Theorem ptbas

Description: The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1
|- B = { x | E. g ( ( g Fn A /\ A. y e. A ( g ` y ) e. ( F ` y ) /\ E. z e. Fin A. y e. ( A \ z ) ( g ` y ) = U. ( F ` y ) ) /\ x = X_ y e. A ( g ` y ) ) }
Assertion ptbas
|- ( ( A e. V /\ F : A --> Top ) -> B e. TopBases )

Proof

Step Hyp Ref Expression
1 ptbas.1
 |-  B = { x | E. g ( ( g Fn A /\ A. y e. A ( g ` y ) e. ( F ` y ) /\ E. z e. Fin A. y e. ( A \ z ) ( g ` y ) = U. ( F ` y ) ) /\ x = X_ y e. A ( g ` y ) ) }
2 1 ptbasin2
 |-  ( ( A e. V /\ F : A --> Top ) -> ( fi ` B ) = B )
3 fibas
 |-  ( fi ` B ) e. TopBases
4 2 3 eqeltrrdi
 |-  ( ( A e. V /\ F : A --> Top ) -> B e. TopBases )