| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcldmpt.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | ptcldmpt.j |  |-  ( ( ph /\ k e. A ) -> J e. Top ) | 
						
							| 3 |  | ptcldmpt.c |  |-  ( ( ph /\ k e. A ) -> C e. ( Clsd ` J ) ) | 
						
							| 4 |  | nfcv |  |-  F/_ l C | 
						
							| 5 |  | nfcsb1v |  |-  F/_ k [_ l / k ]_ C | 
						
							| 6 |  | csbeq1a |  |-  ( k = l -> C = [_ l / k ]_ C ) | 
						
							| 7 | 4 5 6 | cbvixp |  |-  X_ k e. A C = X_ l e. A [_ l / k ]_ C | 
						
							| 8 | 2 | fmpttd |  |-  ( ph -> ( k e. A |-> J ) : A --> Top ) | 
						
							| 9 |  | nfv |  |-  F/ k ( ph /\ l e. A ) | 
						
							| 10 |  | nfcv |  |-  F/_ k Clsd | 
						
							| 11 |  | nffvmpt1 |  |-  F/_ k ( ( k e. A |-> J ) ` l ) | 
						
							| 12 | 10 11 | nffv |  |-  F/_ k ( Clsd ` ( ( k e. A |-> J ) ` l ) ) | 
						
							| 13 | 5 12 | nfel |  |-  F/ k [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) | 
						
							| 14 | 9 13 | nfim |  |-  F/ k ( ( ph /\ l e. A ) -> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) | 
						
							| 15 |  | eleq1w |  |-  ( k = l -> ( k e. A <-> l e. A ) ) | 
						
							| 16 | 15 | anbi2d |  |-  ( k = l -> ( ( ph /\ k e. A ) <-> ( ph /\ l e. A ) ) ) | 
						
							| 17 |  | 2fveq3 |  |-  ( k = l -> ( Clsd ` ( ( k e. A |-> J ) ` k ) ) = ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) | 
						
							| 18 | 6 17 | eleq12d |  |-  ( k = l -> ( C e. ( Clsd ` ( ( k e. A |-> J ) ` k ) ) <-> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) ) | 
						
							| 19 | 16 18 | imbi12d |  |-  ( k = l -> ( ( ( ph /\ k e. A ) -> C e. ( Clsd ` ( ( k e. A |-> J ) ` k ) ) ) <-> ( ( ph /\ l e. A ) -> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ k e. A ) -> k e. A ) | 
						
							| 21 |  | eqid |  |-  ( k e. A |-> J ) = ( k e. A |-> J ) | 
						
							| 22 | 21 | fvmpt2 |  |-  ( ( k e. A /\ J e. Top ) -> ( ( k e. A |-> J ) ` k ) = J ) | 
						
							| 23 | 20 2 22 | syl2anc |  |-  ( ( ph /\ k e. A ) -> ( ( k e. A |-> J ) ` k ) = J ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ( ph /\ k e. A ) -> ( Clsd ` ( ( k e. A |-> J ) ` k ) ) = ( Clsd ` J ) ) | 
						
							| 25 | 3 24 | eleqtrrd |  |-  ( ( ph /\ k e. A ) -> C e. ( Clsd ` ( ( k e. A |-> J ) ` k ) ) ) | 
						
							| 26 | 14 19 25 | chvarfv |  |-  ( ( ph /\ l e. A ) -> [_ l / k ]_ C e. ( Clsd ` ( ( k e. A |-> J ) ` l ) ) ) | 
						
							| 27 | 1 8 26 | ptcld |  |-  ( ph -> X_ l e. A [_ l / k ]_ C e. ( Clsd ` ( Xt_ ` ( k e. A |-> J ) ) ) ) | 
						
							| 28 | 7 27 | eqeltrid |  |-  ( ph -> X_ k e. A C e. ( Clsd ` ( Xt_ ` ( k e. A |-> J ) ) ) ) |