Metamath Proof Explorer


Theorem ptcls

Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses ptcls.2
|- J = ( Xt_ ` ( k e. A |-> R ) )
ptcls.a
|- ( ph -> A e. V )
ptcls.j
|- ( ( ph /\ k e. A ) -> R e. ( TopOn ` X ) )
ptcls.c
|- ( ( ph /\ k e. A ) -> S C_ X )
Assertion ptcls
|- ( ph -> ( ( cls ` J ) ` X_ k e. A S ) = X_ k e. A ( ( cls ` R ) ` S ) )

Proof

Step Hyp Ref Expression
1 ptcls.2
 |-  J = ( Xt_ ` ( k e. A |-> R ) )
2 ptcls.a
 |-  ( ph -> A e. V )
3 ptcls.j
 |-  ( ( ph /\ k e. A ) -> R e. ( TopOn ` X ) )
4 ptcls.c
 |-  ( ( ph /\ k e. A ) -> S C_ X )
5 toponmax
 |-  ( R e. ( TopOn ` X ) -> X e. R )
6 3 5 syl
 |-  ( ( ph /\ k e. A ) -> X e. R )
7 6 4 ssexd
 |-  ( ( ph /\ k e. A ) -> S e. _V )
8 7 ralrimiva
 |-  ( ph -> A. k e. A S e. _V )
9 iunexg
 |-  ( ( A e. V /\ A. k e. A S e. _V ) -> U_ k e. A S e. _V )
10 2 8 9 syl2anc
 |-  ( ph -> U_ k e. A S e. _V )
11 axac3
 |-  CHOICE
12 acacni
 |-  ( ( CHOICE /\ A e. V ) -> AC_ A = _V )
13 11 2 12 sylancr
 |-  ( ph -> AC_ A = _V )
14 10 13 eleqtrrd
 |-  ( ph -> U_ k e. A S e. AC_ A )
15 1 2 3 4 14 ptclsg
 |-  ( ph -> ( ( cls ` J ) ` X_ k e. A S ) = X_ k e. A ( ( cls ` R ) ` S ) )