Step |
Hyp |
Ref |
Expression |
1 |
|
ptcls.2 |
|- J = ( Xt_ ` ( k e. A |-> R ) ) |
2 |
|
ptcls.a |
|- ( ph -> A e. V ) |
3 |
|
ptcls.j |
|- ( ( ph /\ k e. A ) -> R e. ( TopOn ` X ) ) |
4 |
|
ptcls.c |
|- ( ( ph /\ k e. A ) -> S C_ X ) |
5 |
|
toponmax |
|- ( R e. ( TopOn ` X ) -> X e. R ) |
6 |
3 5
|
syl |
|- ( ( ph /\ k e. A ) -> X e. R ) |
7 |
6 4
|
ssexd |
|- ( ( ph /\ k e. A ) -> S e. _V ) |
8 |
7
|
ralrimiva |
|- ( ph -> A. k e. A S e. _V ) |
9 |
|
iunexg |
|- ( ( A e. V /\ A. k e. A S e. _V ) -> U_ k e. A S e. _V ) |
10 |
2 8 9
|
syl2anc |
|- ( ph -> U_ k e. A S e. _V ) |
11 |
|
axac3 |
|- CHOICE |
12 |
|
acacni |
|- ( ( CHOICE /\ A e. V ) -> AC_ A = _V ) |
13 |
11 2 12
|
sylancr |
|- ( ph -> AC_ A = _V ) |
14 |
10 13
|
eleqtrrd |
|- ( ph -> U_ k e. A S e. AC_ A ) |
15 |
1 2 3 4 14
|
ptclsg |
|- ( ph -> ( ( cls ` J ) ` X_ k e. A S ) = X_ k e. A ( ( cls ` R ) ` S ) ) |