Step |
Hyp |
Ref |
Expression |
1 |
|
ptcmpg.1 |
|- J = ( Xt_ ` F ) |
2 |
|
ptcmpg.2 |
|- X = U. J |
3 |
|
nfcv |
|- F/_ k ( F ` a ) |
4 |
|
nfcv |
|- F/_ a ( F ` k ) |
5 |
|
nfcv |
|- F/_ k ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) |
6 |
|
nfcv |
|- F/_ u ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) |
7 |
|
nfcv |
|- F/_ a ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) |
8 |
|
nfcv |
|- F/_ b ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) |
9 |
|
fveq2 |
|- ( a = k -> ( F ` a ) = ( F ` k ) ) |
10 |
|
fveq2 |
|- ( a = k -> ( w ` a ) = ( w ` k ) ) |
11 |
10
|
mpteq2dv |
|- ( a = k -> ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) = ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) ) |
12 |
11
|
cnveqd |
|- ( a = k -> `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) = `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) ) |
13 |
12
|
imaeq1d |
|- ( a = k -> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) = ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " b ) ) |
14 |
|
imaeq2 |
|- ( b = u -> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " b ) = ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) ) |
15 |
13 14
|
sylan9eq |
|- ( ( a = k /\ b = u ) -> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) = ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) ) |
16 |
3 4 5 6 7 8 9 15
|
cbvmpox |
|- ( a e. A , b e. ( F ` a ) |-> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` a ) ) " b ) ) = ( k e. A , u e. ( F ` k ) |-> ( `' ( w e. X_ n e. A U. ( F ` n ) |-> ( w ` k ) ) " u ) ) |
17 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
18 |
17
|
unieqd |
|- ( n = m -> U. ( F ` n ) = U. ( F ` m ) ) |
19 |
18
|
cbvixpv |
|- X_ n e. A U. ( F ` n ) = X_ m e. A U. ( F ` m ) |
20 |
|
simp1 |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> A e. V ) |
21 |
|
simp2 |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> F : A --> Comp ) |
22 |
|
cmptop |
|- ( k e. Comp -> k e. Top ) |
23 |
22
|
ssriv |
|- Comp C_ Top |
24 |
|
fss |
|- ( ( F : A --> Comp /\ Comp C_ Top ) -> F : A --> Top ) |
25 |
21 23 24
|
sylancl |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> F : A --> Top ) |
26 |
1
|
ptuni |
|- ( ( A e. V /\ F : A --> Top ) -> X_ n e. A U. ( F ` n ) = U. J ) |
27 |
20 25 26
|
syl2anc |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X_ n e. A U. ( F ` n ) = U. J ) |
28 |
27 2
|
eqtr4di |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X_ n e. A U. ( F ` n ) = X ) |
29 |
|
simp3 |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X e. ( UFL i^i dom card ) ) |
30 |
28 29
|
eqeltrd |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> X_ n e. A U. ( F ` n ) e. ( UFL i^i dom card ) ) |
31 |
16 19 20 21 30
|
ptcmplem5 |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> ( Xt_ ` F ) e. Comp ) |
32 |
1 31
|
eqeltrid |
|- ( ( A e. V /\ F : A --> Comp /\ X e. ( UFL i^i dom card ) ) -> J e. Comp ) |