Step |
Hyp |
Ref |
Expression |
1 |
|
pthd.p |
|- ( ph -> P e. Word _V ) |
2 |
|
pthd.r |
|- R = ( ( # ` P ) - 1 ) |
3 |
|
pthd.s |
|- ( ph -> A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
4 |
|
pthd.f |
|- ( # ` F ) = R |
5 |
|
pthd.t |
|- ( ph -> F ( Trails ` G ) P ) |
6 |
4 2
|
eqtri |
|- ( # ` F ) = ( ( # ` P ) - 1 ) |
7 |
4
|
oveq2i |
|- ( 1 ..^ ( # ` F ) ) = ( 1 ..^ R ) |
8 |
7
|
raleqi |
|- ( A. j e. ( 1 ..^ ( # ` F ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) <-> A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
9 |
8
|
ralbii |
|- ( A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) <-> A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ R ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
10 |
3 9
|
sylibr |
|- ( ph -> A. i e. ( 0 ..^ ( # ` P ) ) A. j e. ( 1 ..^ ( # ` F ) ) ( i =/= j -> ( P ` i ) =/= ( P ` j ) ) ) |
11 |
1 6 10
|
pthdlem1 |
|- ( ph -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
12 |
1 6 10
|
pthdlem2 |
|- ( ph -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
13 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
14 |
5 11 12 13
|
syl3anbrc |
|- ( ph -> F ( Paths ` G ) P ) |