Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0l |
|- ( I e. ( 0 ..^ ( # ` F ) ) -> ( I = 0 \/ I e. ( 1 ..^ ( # ` F ) ) ) ) |
2 |
|
simpr |
|- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> F ( Paths ` G ) P ) |
3 |
|
pthiswlk |
|- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
4 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
5 |
|
1zzd |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 e. ZZ ) |
6 |
|
nn0z |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ZZ ) |
7 |
6
|
adantr |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> ( # ` F ) e. ZZ ) |
8 |
|
simpr |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 < ( # ` F ) ) |
9 |
|
fzolb |
|- ( 1 e. ( 1 ..^ ( # ` F ) ) <-> ( 1 e. ZZ /\ ( # ` F ) e. ZZ /\ 1 < ( # ` F ) ) ) |
10 |
5 7 8 9
|
syl3anbrc |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 e. ( 1 ..^ ( # ` F ) ) ) |
11 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
12 |
11
|
adantr |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
13 |
|
ax-1ne0 |
|- 1 =/= 0 |
14 |
13
|
a1i |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> 1 =/= 0 ) |
15 |
10 12 14
|
3jca |
|- ( ( ( # ` F ) e. NN0 /\ 1 < ( # ` F ) ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) |
16 |
15
|
ex |
|- ( ( # ` F ) e. NN0 -> ( 1 < ( # ` F ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) ) |
17 |
3 4 16
|
3syl |
|- ( F ( Paths ` G ) P -> ( 1 < ( # ` F ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) ) |
18 |
17
|
impcom |
|- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) |
19 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 0 ) ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
20 |
2 18 19
|
syl2anc |
|- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` 1 ) =/= ( P ` 0 ) ) |
21 |
20
|
necomd |
|- ( ( 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
22 |
21
|
3adant1 |
|- ( ( I = 0 /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
23 |
|
fveq2 |
|- ( I = 0 -> ( P ` I ) = ( P ` 0 ) ) |
24 |
|
fv0p1e1 |
|- ( I = 0 -> ( P ` ( I + 1 ) ) = ( P ` 1 ) ) |
25 |
23 24
|
neeq12d |
|- ( I = 0 -> ( ( P ` I ) =/= ( P ` ( I + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
26 |
25
|
3ad2ant1 |
|- ( ( I = 0 /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( ( P ` I ) =/= ( P ` ( I + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
27 |
22 26
|
mpbird |
|- ( ( I = 0 /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
28 |
27
|
3exp |
|- ( I = 0 -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
29 |
|
simp3 |
|- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> F ( Paths ` G ) P ) |
30 |
|
id |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ( 1 ..^ ( # ` F ) ) ) |
31 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
32 |
31
|
sseli |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ( 0 ..^ ( # ` F ) ) ) |
33 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ ( # ` F ) ) -> ( I + 1 ) e. ( 0 ... ( # ` F ) ) ) |
34 |
32 33
|
syl |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> ( I + 1 ) e. ( 0 ... ( # ` F ) ) ) |
35 |
|
elfzoelz |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. ZZ ) |
36 |
35
|
zcnd |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> I e. CC ) |
37 |
|
1cnd |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> 1 e. CC ) |
38 |
13
|
a1i |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> 1 =/= 0 ) |
39 |
36 37 38
|
3jca |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> ( I e. CC /\ 1 e. CC /\ 1 =/= 0 ) ) |
40 |
|
addn0nid |
|- ( ( I e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> ( I + 1 ) =/= I ) |
41 |
40
|
necomd |
|- ( ( I e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> I =/= ( I + 1 ) ) |
42 |
39 41
|
syl |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> I =/= ( I + 1 ) ) |
43 |
30 34 42
|
3jca |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> ( I e. ( 1 ..^ ( # ` F ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` F ) ) /\ I =/= ( I + 1 ) ) ) |
44 |
43
|
3ad2ant1 |
|- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( I e. ( 1 ..^ ( # ` F ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` F ) ) /\ I =/= ( I + 1 ) ) ) |
45 |
|
pthdivtx |
|- ( ( F ( Paths ` G ) P /\ ( I e. ( 1 ..^ ( # ` F ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` F ) ) /\ I =/= ( I + 1 ) ) ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
46 |
29 44 45
|
syl2anc |
|- ( ( I e. ( 1 ..^ ( # ` F ) ) /\ 1 < ( # ` F ) /\ F ( Paths ` G ) P ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |
47 |
46
|
3exp |
|- ( I e. ( 1 ..^ ( # ` F ) ) -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
48 |
28 47
|
jaoi |
|- ( ( I = 0 \/ I e. ( 1 ..^ ( # ` F ) ) ) -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
49 |
1 48
|
syl |
|- ( I e. ( 0 ..^ ( # ` F ) ) -> ( 1 < ( # ` F ) -> ( F ( Paths ` G ) P -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) ) ) |
50 |
49
|
3imp31 |
|- ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ I e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` I ) =/= ( P ` ( I + 1 ) ) ) |