Step |
Hyp |
Ref |
Expression |
1 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
2 |
|
simplll |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( Trails ` G ) P ) |
3 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
4 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
5 |
3 4
|
syl |
|- ( F ( Trails ` G ) P -> ( # ` F ) e. NN0 ) |
6 |
5
|
ad3antrrr |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( # ` F ) e. NN0 ) |
7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
8 |
7
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
9 |
3 8
|
syl |
|- ( F ( Trails ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
10 |
9
|
ad3antrrr |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
11 |
|
simpllr |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
12 |
|
simpr |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
13 |
10 11 12
|
3jca |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
14 |
|
simplr |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
15 |
|
injresinj |
|- ( ( # ` F ) e. NN0 -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> Fun `' P ) ) ) |
16 |
6 13 14 15
|
syl3c |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> Fun `' P ) |
17 |
2 16
|
jca |
|- ( ( ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
18 |
17
|
ex3 |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
19 |
1 18
|
sylbi |
|- ( F ( Paths ` G ) P -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) ) |
20 |
19
|
imp |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
21 |
|
isspth |
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
22 |
20 21
|
sylibr |
|- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( SPaths ` G ) P ) |